
The Development of a Computer Application that Identifies
Reusable Components through Formal Specifications

Francisco Moreira Couto
Dept. of Mathematics, Technical University of Lisbon

Av. Rovisco Pais, 1049-001 Lisboa Codex, Portugal

E-mail: fcouto@math.ist.utl.pt

Abstract

Software reuse is certainly a way for increasing soft-
ware productivity. In this paper we propose to use
Formal Methods to develop one computer applica-
tion, which will be able to automate the process of
software reuse. We use single-sort algebraic spec-
ifications to specify the components functionality,
and then we apply the mathematical framework of
category theory to develop matching mechanisms,
which identify reusable components.

Keywords: algebraic specification, category the-
ory, software reuse, specification matching.

1 Introduction

This paper presents one solution to the problem of
software reuse. The method proposed here uses for-
mal specifications in the classification and retrieval
of the components, with the ultimate goal of iden-
tifying reusable components. More precisely, the
solution presented here consists of a computer ap-
plication with the functionality represented in the
figure 1. Generically, the user identifies the com-
ponent’s algebraic specification [TM87], which is
given to the application. Afterwards, the applica-
tion creates the respective categorical representa-
tion [Wal91, Pie93]. Finally, the application will
try to identify reusable components using the cat-
egorical representations that are in the repository.

We selected algebraic specifications in the com-
ponent’s classification because the algebraic spec-
ification languages are closer to human reasoning
than the category theory, so is more difficult to
the user classify the components using the category

User Repository

Translator

�
�

�
� Matching

�
�

�
�

?
������������*

HHHHHHHHHHHHY

-
?

Algebraic
Specification

Categorical
Representation

Categorical
Representation

Categorical
Representation

Reusable
Component

Figure 1: The generic architecture of the applica-
tion proposed

theory. We selected category theory in the compo-
nents retrieval because category theory is a pow-
erful, language independent, mathematical frame-
work and can be efficiently implemented in match-
ing algorithms.

The implementation of this application will be
split in two phases. The first phase develops the
process Translator of the figure 1, which translates
components’ algebraic specifications into their re-
spective categorical representations. The second
phase develops the process Matching of the figure 1,
which uses matching algorithms to identify categor-
ical representations that represent the same func-
tionality behaviour.

1.1 First phase

This phase will be made in two stages. The
first stage will be the revision and the feasibil-
ity study of the methods proposed in the litera-
ture [Cre98, Lai76]. The goal is to obtain a set of
algorithms that can be directly implemented in a

1

computer application. The second stage consists in
implementing the algorithms identified in the first
stage. The result of this stage will be a computer
application that accomplishes the main objective of
this phase.

1.2 Second phase

This phase consists in identifying reusable com-
ponents through their categorical representation.
Here, it’ll be revised the algorithms presented in
the paper [Cre98], which determine if two cate-
gorical representations match one with each other.
Until now, only isomorphic matching algorithms
had been used to identify reusable components.
These algorithms do not cover every possible case of
code reusability. Therefore, other non-isomorphic
matching algorithms must be developed.

Another objective of this phase is to develop a
computer application that implement the matching
algorithms identified. This application will identify,
automatically, possible reusable components.

1.3 Complexity

During the developing of this project it’ll be created
some component’s algebraic specifications to test
the functionality of the computer application devel-
oped. Therefore, it’ll be possible to make studies
about the complexity of the algorithms developed,
and then see if they are practicable.

1.4 Programming language

The algorithms developed in this project will be
expressed in ML [RB98], a functional programming
language. The principal reason for this choice is be-
cause functional languages are closer to mathemat-
ical notation and the computer application will ma-
nipulate two types of specifications based in math-
ematics.

2 Basic definitions

This section gives a brief overview of single-sort al-
gebraic logics and category theory.

2.1 Single-sort algebraic logics

Algebraic logic [Gin86] is a restriction of the clas-
sical logics in a way that the only acceptable terms
are variables and constants.

The basic alphabet for one single-sort algebraic
language is made of:

• A list of individual variables v1, v2, . . .;

• A list of constants c1, c2, . . .;

• Connectives ¬,∨,∧,⇒;

• Universal and existencial quantifiers ∀,∃;

• A list of predicates P1, P2, . . .;

Terms: These are expressions denoting individu-
als and are variables or constants.

Propositions: These are expressions of the form
Pi(t1, . . . , tn) where Pi is a predicate of arity n and
t1, . . . , tn are terms. The logic constants true and
false are propositions too.

Formulae: These are built inductively by the
rules

• Each proposition is a formula.

• If φ and ψ are formulae, then so are ¬φ, φ∨ψ,
φ ∧ ψ and φ ⇒ ψ.

• If φ is a formula and vi an individual variable,
then ∀vi φ and ∃vi φ are formulae.

2.2 Normal forms

Normal forms [Hog90] are forms in which the for-
mulas are replaced by others formulas that are
equivalent, but with a more regular structure.
Therefore, these formulas can be more efficiently
manipulate.

In our work we adopted the clausal form, which
is a particular case of a normal form.

Definition 2.1 A clausal representation is a set of
clauses that denotes its conjunction.

Definition 2.2 A clause is a formula with the
form N⇒P, where N is a conjunction of proposi-
tions and P is a disjunction of propositions.

Note 2.1 The quantifiers are applied to a set of
clauses.

2

2.3 Category theory

Category theory [Wal91] is the algebra of functions
in which the principal operation on functions is
taken to be composition.

A category is an abstract structure: a collection
of objects, together with a collection of arrows be-
tween them. For example, the objects could be
sets of propositions representing their conjunction
or disjunction, and the arrows the implications be-
tween them.

Definition 2.3 A category Cat consists of a col-
lection of objects (called obj Cat) and a collection
of morphisms or arrows (arr Cat). The objects
are denoted A,B, C, . . . and the arrows are denoted
f, g, h, . . .

Further:

• A arrow has a designed domain and codomain
in obj Cat. When the domain of f is A and
the codomain of f is B we write f : A → B.

• Given arrows f : A → B, g : B → C, there is
a designated composite arrow, g ◦ f : A → C.

• Given any object A, there is a designated
identity arrow 1A : A → A.

• The data above is required to satisfy the follow-
ing:

Identity laws If f : A → B then 1B ◦ f = f
and f ◦ 1A = f

Associative law If f : A → B, g : B → C
and h : C → D then
h ◦ (g ◦ f) = (h ◦ g) ◦ f : A → D

Definition 2.4 In a category Cat an object 0 is
called initial if for any object X in Cat there is a
unique arrow 0 → X.
An object 1 is called terminal if for any object X
in Cat there is a unique arrow X → 1.

In the category described above, where the ob-
jects were sets of propositions, the initial object
should represent the logical value false and the
terminal object should represent the logical value
true.

3 Tools used

The stage of implementation began with the search
of tools to implement Standard ML (SML) algo-
rithms. The tools chosen are from the version
110.0.6 of Standard ML of New Jersey (SML/NJ)
system. The SML/NJ system can be found on the
Internet at
http://cm.bell-labs.com/cm/cs/what/smlnj

The reasons for choosing the SML/NJ system
are: it’s a freeware system; it works in various ma-
chine/OS combinations; it’s supplied with a lexical
analyzer and a parser generator.

4 Options made

This section describes the more important options
and extensions made during the revision and the
feasibility study of the methods proposed in the
literature [Cre98, Lai76].

4.1 Quantifiers

The methods proposed restrict the application of
quantifiers to a single predicate, and they couldn’t
be directly represented as algorithms because they
have some ambiguous aspects. Therefore, in this
work was developed a new method for treating
quantifiers, based in the following result:

Result 4.1 Given a predicate P and being the set
Sort equal to {c1, . . . , cn}, we have the following
tautologies:

• ∀x P (x) ⇔ P (c1) ∧ . . . ∧ P (cn)

• ∃x P (x) ⇔ P (c1) ∨ . . . ∨ P (cn)

For any formula, with quantifiers applied to a
single predicate, we can use the result 4.1 to get a
new equivalent formula without quantifiers.
This result works only with quantifiers applied to
a single predicate. Therefore, we have to find new
results that given any formula, with quantifiers ap-
plied to more than one predicate, identify a new
equivalent formula without quantifiers. It was been
made a study of such results, but it wasn’t possible
to found all of them until now.

3

4.2 Normal forms

In the original algorithms, the formulas weren’t
represented in a normal form. Thus, the algorithms
were modified in order to represent the formulas in
the clausal form. Therefore, the user must intro-
duce an algebraic specification with all formulas in
clausal form.

The formulas used in the computer application
can only have quantifiers applied to a single pred-
icate. Therefore for representing these formulas in
the clausal representation it was necessary to ex-
tend the proposition definition.

Definition 4.1 A pseudo-proposition is a propo-
sition or a quantifier applied to a proposition.

Note 4.1 Clauses that have pseudo-propositions
are called pseudo-clauses.

The result 4.1, for dealing with the quantifiers,
give formulas that could not be in the clausal form.
Thus, it’s necessary to represent these formulas into
the clausal form. For doing this, we use the follow-
ing result:

Result 4.2 Given the propositions a, b, c, d, then
we have the following tautologies:

• [a ∧ (b ∨ c) ⇒ d] ⇔ [(a ∧ b ⇒ d) ∧ (a ∧ c ⇒ d)]

• [a ⇒ b ∨ (c ∧ d)] ⇔ [(a ⇒ b ∨ c) ∧ (a ⇒ b ∨ d)]

4.3 Predicate arity

In the originals methods predicates have only one
argument, i.e., their arity is one. In this work,
we didn’t remove such limitation because it’s been
given more importance to the restrictions on the
quantifiers. Therefore, in the computer application
presented here, predicates still have only one argu-
ment.

4.4 Predicate implication

The set formulae were extended with the predicate
implication formula. This new type of formula is
represented in the form P1 → P2, where P1 and P2

are any predicates.
The meaning of this new type formula can be de-
scribed as P1 → P2 ⇔ ∀x [P1(x) ⇒ P2(x)]

Note 4.2 The notion of pseudo-clause is extended
with the predicate implication formula.

The reasons for using this new type of formula
are: it isn’t possible to apply explicitly a quanti-
fier to a formula; it’s a very useful formula; and its
meaning will be very helpful in matching categori-
cal representations.

4.5 Equality predicate

The use of the equality predicate (=) is very impor-
tant to specify a component’s functionality. The
equality predicate arity is two, but in this project
we only have predicates of arity one. Therefore was
developed the following solution to this problem.
The computer application replaces the proposition
=(Variable,Constant) by the proposition =Vari-
able(Constant), therefore, there is a distinct equal-
ity predicate for each variable although they have
all the same meaning, which is to verify if the vari-
able value is equal to the constant.

The following propositions =(Var1,Var2) and
=(Var2,Var1) are equivalent, but the computer
application represents these propositions, respec-
tively, by =Var1(Var2) and =Var2(Var1). There-
fore, it’ll be impossible to match =Var1(Var2) with
=Var2(Var1) because they use two different pred-
icates although they represent equivalent proposi-
tions. Consequentially, in this project the argu-
ments of an equality predicate shouldn’t be two
variables.

4.6 Specials predicates

In the original proposals, all the predicates were
used in the same way, but when the user apply
the equality predicate he implicitly gives a special
meaning to this predicate, which is the same in all
specifications. Therefore, we shouldn’t match an
equality predicate with any other. In this project,
the equality predicate is treated as special pred-
icate so it can’t be matched with others normal
predicates.

It could be used much more special predicates
like the major (>), minor (<), . . .
All of these predicates holds its own meaning. In
this project, we only used the equality predicate,
but the methods implemented can support more
special predicates.

4

User Repository

Parsing

�
�

�
�

Translator

�
�

�
�

Saver

�
�

�
�

?
�

�
�

�7 S
S

S
Sw

6Algebraic
Specification

(outside) Algebraic
Specification

(inside)

Categorical
Representation

(outside)Categorical
Representation

(inside)

Figure 2: The generic architecture of the applica-
tion developed

4.7 The set Sort

The proposed methods consider the set Sort as a
discrete and finite set. This isn’t a very serious lim-
itation because almost all programming languages
have its variables restricted to a maximum and a
minimum value. Therefore, the computer appli-
cation developed uses a discrete and finite set to
represent the set Sort.

5 Results

This section gives a brief overview of the results ob-
tained in this work. These results have permitted
to implement a computer application that trans-
lates a component’s algebraic specification into its
categorical representation.

The generic architecture of this application is de-
scribed in the figure 2. The user gives a single-
sort algebraic specification in the outside represen-
tation, which is transformed in its inside repre-
sentation by the Parsing process. Afterwards, the
Translator creates the respective inside categorical
representation, which is transformed in its outside
representation and saved in the repository by the
Saver process.

5.1 Algebraic specifications

In this work is considered a code component as the
basic unit of reusability. The user must describe the
behaviour of a code component by a formal speci-
fication that he writes in a file. This specification
is called an algebraic specification (outside), whose
syntax in EBNF notation is depicted next:

<specification>::=Component<id>
Sort:{<constants>}
Variables:<vars>
Invariant:<pseudo-clauses>
{<method>}

<constants>::=<constant>{,<constant>}
<vars>::=<var>{,<var>}
<method>::=Method:<id>

Interface:<interfaces>
Requires:<preconditions>
Ensures:<postconditions>

<interfaces>::=[<interface>{,<interface>}]
<interface>::=?<var>|!<var>
<preconditions>::=<disjunction>

{,<disjunction>}
<postconditions>::={<postcondition>;}
<postcondition>::=<antecedent>-><consequent>
<antecedent>::=<conjunction>
<consequent>::=<pseudo-clauses>
<pseudo-clauses>::=<pseudo-clause>

{,<pseudo-clause>}
<pseudo-clause>::=

<conjunction>=><disjunction>|
<predicate>-><predicate>

<predicate>::=<id>|<variable>=
<conjunction>::=<pseudo-proposition>

{&<pseudo-proposition>}
<disjunction>::=<pseudo-proposition>

{|<pseudo-proposition>}
<pseudo-proposition>::=><var>:<proposition>|

<<var>:<proposition>|
<proposition>

<proposition>::=<id>(<term>)|
<variable>=<term>|
true|false

<term>::=<variable>|<constant>
<variable>::=<var>|?<var>|!<var>
<var>::=<id>
<constant>::=<id>
<id>::=<character>{<character>|<digit>}

The set Sort is defined by a set of constants,
which define the possible values to any variable.
The Invariant’s list of pseudo-clauses depicts con-
straints on the system behavior. State variables are
presented in the Variables section.

A component contains a list of methods. For ev-
ery method the inputs and outputs variables are
depicted in the Interface section. Variable names
with question and exclamation marks represent, re-
spectively, input and output parameters. The Re-
quires preconditions describe restrictions on the ar-
guments, which define how the method may be

5

invoked. The Ensures postconditions depict con-
straints on the method behavior. The postcondi-
tion antecedent selects the initial states and may
only contain input and state variables.

The specification must be deterministic. There-
fore, in every method specification the initial set of
states described by two different antecedents must
be disjoint.
The specification must also be robust: for every
operation, the specification must describe the re-
sulting properties when the system starts holding
any possible preconditions, namely, normal and er-
ror conditions. Therefore, the union of the initial
set of states described by the disjunction of the an-
tecedents must be equal to the set of states de-
scribed by the precondition.
In this specification language there is no guaran-
tee that, if not referred in the consequent part of
the postcondition, the value of state variables will
remain unchanged.

An implicit conjunction of conditions is assumed
in the pre and postconditions. Likewise, a list of
pseudo-clauses represents an implicit conjunction
of pseudo-clauses.

Some of the symbols, from the basic alphabet for
one single-sort algebraic language, were replaced by
others symbols, so it can be possible to save a spec-
ification in a text file. These replacements are de-
picted next: > replaced ∀, < replaced ∃, & replaced
∧ and | replaced ∨.

Example 5.1 Next is presented an example of a
component’s algebraic specification, which repre-
sents the functionality of three special switches.

Component Switches
Sort: {On, Off, Usv}
Variables: switch1, switch2, switch3
Invariant:
% One(x) indicates if any
% switch has the value x.
switch1= -> One,
switch2= -> One,
switch3= -> One,
One(On) => switch1=On | switch2=On |

switch3=On,
One(Off) => switch1=Off | switch2=Off |

switch3=Off,
One(Usv) => switch1=Usv | switch2=Usv |

switch3=Usv,
% All(x) indicates if all the
% switches have the value x.

% All(Usv) is always false.
switch1=On &
switch2=On &
switch3=On => All(On),
switch1=Off &
switch2=Off &
switch3=Off => All(Off),
All -> switch1=,
All -> switch2=,
All -> switch3=,
All -> One

% If the switch2 is On then all
% the switches stay with the value
% of the ?InitSwitch variable.

Method: Init
Interface: ?InitSwitch
Requires:
?InitSwitch=On | ?InitSwitch=Off,
switch2=On

Ensures:
?InitSwitch=On & switch2=On ->

true => switch1=On,
true => switch2=On,
true => switch3=On;

?InitSwitch=Off & switch2=On ->
true => switch1=Off,
true => switch2=Off,
true => switch3=Off;

% If all the switches have the same value
% then !Value stay with this value
% else !Value stay with the value Usv.

Method: DisplayAll
Interface: !Value
Requires: <x:All(x) | >x:One(x)
Ensures:
All(On) -> true => !value=On;
All(Off) -> true => !value=Off;
>x:One(x) -> true => !value=Usv;

% Replace the switch2 value to the
% value of ?s2, !s1 stay with
% the value of swicth1, and all the
% switches stay with different values.

Method: PutAllTypes
Interface: ?s2, !s1
Requires: <x:All(x)
Ensures:

<x:All(x) ->
switch1=On => !s1=On,
switch1=Off => !s1=Off,
switch1=Usv => !s1=Usv,
?s2=On => switch2=On,

6

?s2=Off => switch2=Off,
?s2=Usv => switch2=Usv,
true => >x:One(x);

An outside representation of an algebraic speci-
fication is transformed in its inside representation,
so the manipulation of an algebraic specification
could be more efficient. This inside representation
has the same information using lists and structures.
It’s possible to put comments in an outside speci-
fication using the character %, but this comments
are not present in an inside specification.

5.2 Categorical representations

The computer application creates a categorical rep-
resentation of a component’s algebraic specifica-
tion. This categorical representation (outside) is
written in a file, and its syntax in EBNF notation
is depicted next1:

<categ. rep.>::=Categorical Representation
Component<id>
{<method>}

<method>::=Method:<id>
<precategory>
{<postcategory>}

<precategory>::=PreCategory:<categories>
<postcategory>::=PostCategory:

<C-object>⇒<categories>
<categories>::=<C-category><P-category>
<C-category>::=Category C:

<C-objects><C-arrows>
<C-objects>::=Objects:{<C-object>}
<C-arrows>::=Arrows:{<C-arrow>}
<C-arrow>::=<C-object>→<C-object>
<C-object>::=<singular>|<minimum>|

<maximum>
<singular>::=#{<assertion>}
<minimum>::=&{<assertions>}
<maximum>::=|{<assertions>}
<assertions>::=<assertion>{,<assertion>}
<assertion>::=0|1|<predicate>(<term>)
<P-category>::=Category P:

<P-objects><P-arrows>
<P-objects>::=Objects:{<P-object>}
<P-arrows >::=Arrows:{<P-arrow>}
<P-arrow>::=<P-object>→<P-object>
<P-object>::=<predicate>

1<predicate>, <variable>, <term> and <id> are de-
picted in the section 5.1.

Precategory

P-category C-category

�
�

�
�

�� ���� ��
Postcategories

P-category C-category

�
�

�
�

�� ���� ��
P-category C-category

�
�

�
�

�� ���� ��rrr

@
@

@R

A
A
A
A
A
AAU

Figure 3: The categorical representation of one
method specification

A component’s categorical representation is a list
of methods’ categorical representations. For each
method its categorical representation includes a
precategory and a list a postcategories. The pre-
category represents the method precondition, and
for each consequent part of a method postcondition
there is a postcategory that represent it.
Figure 3 depicts the categorical representation of
one method specification, which is a function from
the precategory C-objects to the postcategories.
Therefore, for each component postcondition there
is a C-object that represents the antecedent part,
which is related with a postcategory that represents
the consequent part.

There are two different types of categories; The
C-category represents the logic implications be-
tween sets of assertions, and the P-category rep-
resents the logic implications between predicates.
The C-objects represents one part of a logic impli-
cation, so it can represents an assertion, a minimum
(conjunction) of assertions or a maximum (disjunc-
tion) of assertions.
An assertion represents a proposition, where the
constants true and false are replaced, respectively,
by the terminal (1) and initial (0) objects. A predi-
cate can be a normal predicate or the special equal-
ity predicate. Variable names with question and ex-
clamation marks represent, respectively, input and
output parameters.

The result of translating an algebraic specifica-
tion is an inside categorical representation, which
is represented by lists and structures. Afterwards
is created the equivalent outside categorical repre-
sentation, which is written in a file.

7

5.3 Specifications translation

In this section is presented a generic description of
the algorithms identified, which were used to im-
plement the computer application that translates
a component’s algebraic specification into its cate-
gorical representation.

Component translation
Input: A component’s algebraic specification.
Output: A component’s categorical representation.

1. For each component’s method run the Method
translation algorithm.

2. Create a list with all the categorical represen-
tations obtained in the previous step.

Method translation
Input: A method’s algebraic specification.
Output: A method’s categorical representation.

1. Run the Clauses translation algorithm with
the following arguments:

(a) A equal to a set of pseudo-clauses equiv-
alent to {Eai ⇒ R, (i = 0,. . . ,number
of postconditions)}, where Eai is an an-
tecedent part of a postcondition and R
the precondition.

(b) V is the set of state and method input
variables.

The result of this step is the precategory.

2. For each consequent part of a postcondition,
P, run the Clauses translation algorithm with
the following arguments:

(a) A equal to P.

(b) V is the set of state and method in-
put/output variables.

3. For each postcondition associate its postcate-
gory to the precategory C-object that repre-
sents the antecedent part.

Clauses translation
Input: A as a set of pseudo-clauses.

V as a set variables.
Output: A C-category and a P-category.

1. Join to A the set of pseudo-clauses that repre-
sents the Invariant.

2. For each variable vi ∈ V , join the pseudo-
clause true ⇒ ∃x (vi = x) to A.

3. Run the Clause translation algorithm for each
pseudo-clause in A.

4. Join all the objects and arrows, obtained in
the previous step, into the C-category and P-
category.

Clause translation
Input: C as a pseudo-clause.
Output: A set of C-objects.

A set of C-arrows.
A set of P-objects.
A set of P-arrows.

1. If C represents a predicate implication, then C
as the following form:
P1 → P2 (P1 and P2 are any predicates)

(a) Create the P-objects P1 and P2.

(b) Create the P-arrow whose domain is P1

and codomain is P2.

In this case the algorithm exits here.

2. Run the Replace quantifiers algorithm for C.

3. For each clause Ci, that resulted from the pre-
vious step, do:

(a) Knowing that Ci is represented in the fol-
lowing form:
{p1 ∧ . . . ∧ pn ⇒ q1 ∨ . . . ∨ qm}, where:

• m and n are any two integers num-
bers greater than zero.

• Each one of the symbols p1, . . . , pn,
q1, . . . , qm represent a proposition.

(b) Create the following C-objects:

• min =
{

&{p1, . . . , pn} if n > 1
#p1 otherwise

• max =
{

|{q1, . . . , qm} if n > 1
#q1 otherwise

(c) Create the C-arrow whose domain is min
and codomain is max.

8

(d) For each one of the symbols p1, . . . , pn,
q1, . . . , qm who represents a proposition
of the form P (t), create the P-object that
represents the predicate P .

Replace quantifiers
Input: C as a pseudo-clause.

The set Sort.
Output: A set of clauses.

1. Knowing that C is represented in the following
form:
{p1 ∧ . . . ∧ pn ⇒ q1 ∨ . . . ∨ qm}, where:

• m and n are any two integers numbers
greater than zero.

• The p1, . . . , pn, q1, . . . , qm symbols repre-
sent pseudo-propositions.

2. Knowing that the set Sort is represented by
{x1, . . . , xr}, where:

• r is any integer number greater than zero.

• Each one of the symbols x1, . . . , xr repre-
sents constants.

3. Apply the result 4.1 to the pseudo-clause C,
i.e., for each one of the symbols p1, . . . , pn,
q1, . . . , qm that represents:

• ∀xP (x), replace by P (x1) ∧ . . . ∧ P (xr).

• ∃xP (x), replace by P (x1) ∨ . . . ∨ P (xr).

4. Apply the result 4.2 on the formulas obtained
in the previous step, and the result will be a
set clauses equivalent to C.

Example 5.2 Here is described the steps to ob-
tain the categorical representation of the following
pseudo-clause C:
∀xP1(x) ∧ ∃xP2(x) ∧ P3(c1) ⇒
∀xP4(x) ∨ ∃xP5(x) ∨ P6(c2)
Assuming that the set Sort is {x1, x2}, we have the
following steps:

1. The outcome of applying the result 4.1 to C is
the following formula:
P1(x1)∧P1(x2)∧(P2(x1)∨P2(x2))∧P3(c1) ⇒
(P4(x1) ∧ P4(x2)) ∨ P5(x1) ∨ P5(x2) ∨ P6(c2)

2. The outcome of applying the result 4.2 to the
previous formula is the following set of clauses:
{P1(x1) ∧ P1(x2) ∧ P2(x1) ∧ P3(c1) ⇒
P4(x1) ∨ P5(x1) ∨ P5(x2) ∨ P6(c2),
P1(x1) ∧ P1(x2) ∧ P2(x2) ∧ P3(c1) ⇒
P4(x1) ∨ P5(x1) ∨ P5(x2) ∨ P6(c2),
P1(x1) ∧ P1(x2) ∧ P2(x1) ∧ P3(c1) ⇒
P4(x2) ∨ P5(x1) ∨ P5(x2) ∨ P6(c2),
P1(x1) ∧ P1(x2) ∧ P2(x2) ∧ P3(c1) ⇒
P4(x2) ∨ P5(x1) ∨ P5(x2) ∨ P6(c2)}

3. Create the following C-objects:

• &{P1(x1), P1(x2), P2(x1), P3(c1)}
• &{P1(x1), P1(x2), P2(x2), P3(c1)}
• |{P4(x1), P5(x1), P5(x2), P3(c1)}
• |{P4(x2), P5(x1), P5(x2), P3(c1)}

4. Create the following C-arrows:

• domain:
&{P1(x1), P1(x2), P2(x1), P3(c1)}
codomain:
|{P4(x1), P5(x1), P5(x2), P3(c1)}

• domain:
&{P1(x1), P1(x2), P2(x2), P3(c1)}
codomain:
|{P4(x1), P5(x1), P5(x2), P3(c1)}

• domain:
&{P1(x1), P1(x2), P2(x1), P3(c1)}
codomain:
|{P4(x2), P5(x1), P5(x2), P3(c1)}

• domain:
&{P1(x1), P1(x2), P2(x2), P3(c1)}
codomain:
|{P4(x2), P5(x1), P5(x2), P3(c1)}

5. Create the P-objects P1, P2, P3, P4, P5 and
P6.

6 Conclusions

The first phase of this project has already been
concluded. Its first stage consisted in the revision
and the feasibility study of the methods proposed
in the literature [Cre98, Lai76]. In this stage was
necessary to make some extensions to the originals
methods, so they can be efficiently implemented

9

in a computer application. These extensions con-
sisted in: developing new methods for manipulate
quantifiers; representing the formulas in a pseudo-
clausal form; extending the algebraic specification
language; giving a special meaning to the equality
predicate; and transforming the equality predicate
of arity two into a predicate of arity one.
Therefore, we revised and developed new algo-
rithms to translate algebraic specifications into its
categorical representation.

The second stage implemented the algorithms
identified in the first stage. For this, it was neces-
sary to develop efficient data structures to represent
algebraic specifications and categorical representa-
tions. It was developed two ways of representing
them:

• Outside Representation, which is used to keep
a specification in a file.

• Inside Representation, which is used to manip-
ulate a specification in the memory.

In this project, it was used two algebraic specifica-
tions. One is a simple specification often used in
the literature, which specify the functionality of a
simple switch. The other specification is depicted
in the example 5.1, and it was created in this work
with the propose of testing the computer applica-
tion presented here. Therefore, it includes almost
all types of formulas combinations that are permit-
ted in ours algebraic specifications.

6.1 The computer application

The upshot of the work done so far is a computer
application that translates a component’s algebraic
specification into its categorical representation.

The result of using the tools selected was posi-
tive. It was necessary to take a long time to learn
how to use these tools, because they have little and
a not very good documentation. But, even so, this
time was recuperated in the implementation of the
application because the tools provided an abstrac-
tion level very close to the representation of the
algorithms developed.

After the application was conclude, it was used
with the two algebraic specifications created. The
categorical representations produced by the appli-
cation are much more longer and less perceptive

than their algebraic specifications, but that was al-
ready expected.

This application and all its documentation can
be found on the Internet at
http://www.math.ist.utl.pt/fcouto/tfc/index.html

6.2 Future work

In this project, it’s used a single-sort algebraic spec-
ification language with predicates of arity one. This
language is very restricted and, therefore, the work
must be extended to a more complete specification
language, many-sorted with multiple arity predi-
cates. The representation of such logics is depicted
in [Lai76].

The application of quantifiers in this project can
only be applied to a single predicate. During this
work it was been studied new methods which can
solve this limitation, but it wasn’t possible to com-
plete them until now. Therefore, in the future it’ll
be necessary to complete these methods so it can be
possible to use the quantifiers without restrictions.

Like it was said, this work was split in two phases.
The first one is already complete, now it’ll start the
second phase. This second phase consists in de-
veloping and implementing efficient methods that
identify reusable components through their cate-
gorical representation. This phase will be con-
cluded until September of 2001.

Acknowledgments

I’m grateful to Prof. Crespo for his support and
advices throughout the developing of this work. I
also want to express my gratitude to Prof. Paula
Gouveia for her precious suggestions.

References

[Cre98] Rui Gustavo Crespo. Matching single-
sort algebraic specifications for software
reuse. International Journal of Software
an Knowledge Engineering, 8(3):401–425,
1998.

[Gin86] S. G. Gindikin. Algebraic Logic. Problem
Books in Mathematics. Springer-Verlag,
1986.

10

[Hog90] C. J. Hogger. Essentials of Logic Program-
ming. Oxford Press, 1990.

[Lai76] Luis M. Laita. Un estudio de la lógica alge-
braica desde el punto de vista de la teoŕıa
de categoŕıas. Notre Dame Journal of For-
mal Logic, 17(1):89–118, January 1976.

[Pie93] Benjamin C. Pierce. Basic Category The-
ory for Computer Scientists. MIT Press,
1993.

[RB98] David E. Rydeheard and Rod M. Burstall.
Computational Category Theory. Prentice
Hall, 1998.

[TM87] W. M. Turski and T. S. E. Maibaum.
The Specification of Computer Programs.
Addison-Wesley, 1987.

[Wal91] R. F. C. Walters. Categories and Com-
puter Science. Cambridge University
Press, 1991.

11

